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Purpose
The safety and reliability of aircraft depend on
the health of structural components. Environmen-
tal conditions, cyclic loading due to takeoff and
landing, and aging all contribute to structural wear
and degradation, leading to potentially catastrophic
events.

Structural health monitoring (SHM) techniques
address this need [1]. SHM typically involves
ground-based testing, scheduled according to flight
history, that is, flight hours and takeoff/landing cy-
cles [2]. This approach allocates maintenance based
on statistical models of wear and aging that predict
incipient failure modes. However, anomalous fail-
ure modes may be difficult to detect between sched-
uled maintenance.

To overcome these shortcomings, the goal of
this project is to develop a new approach to analyz-
ing flight data for SHM called sensor-to-sensor sys-
tem identification (S2SID). This technique can de-
crease the need for costly maintenance that takes the
aircraft out of service, while providing the means
for detecting potential failure events that may occur
between traditionally scheduled testing.

Background
In standard system identification, measurements of
input and output signals are used to fit a model of a
chosen structure and dynamic order. In many ap-
plications, however, the input signal is unknown,
and thus sensor measurements are the only avail-
able data. If a statistical description of the un-
known input is available, then sensor-only (also
called “blind”) identification techniques can be used
to detect changes in the dynamics of the system
[3–6]. For structural dynamics applications, sensor-
only identification is known as operational modal

analysis (OMA) [7–11].
In contrast to blind identification, S2SID re-

quires no knowledge of the statistical properties
of the input. For applications where the excita-
tion is unknown and only sensor measurements are
available, S2SID designates one measurement as
the pseudo-input and another measurement as the
pseudo-output. The identified pseudo transfer func-
tion (PTF) typically captures information about only
the zeros (anti-resonances) of the structure. Al-
though pole locations are generally not estimated,
S2SID has the advantage of not requiring knowl-
edge of the system excitation. In fact, the unknown
ambient system excitation plays the necessary role
of providing excitation that can be used to identify
PTFs within S2SID [12, 13]. Extensions to multi-
input, multi-output PTF identification, which is ne-
cessitated by non-scalar excitation, is considered in
[14].

S2SID is related to transmissibility identifica-
tion [9, 15, 16]. In the simplest situation, mea-
surements of transmissibilities assume that one of
the sensors is colocated with the controlled dis-
placement excitation. The resulting transmissibility
involves both resonance (pole) and anti-resonance
(zero) features of the structure. However, transmis-
sibility identification can also be performed with ar-
bitrary arrangements of sensors, without regard to
the location of the external excitation. In this case,
only anti-resonance (zero) information is captured,
and the goal is to construct a transmissibility that
relates one set of measurements to another set so
that the resulting transmissibility is independent of
the forcing function. This objective is thus a spe-
cialization of S2SID to the case of identical sensors
(for example, all accelerometers). For the case of
more than two sensors, transmissibility identifica-
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tion is described in [15]; however, the construction
of the PTF in [15] is incorrect since the structure
of the PTF does not correctly cancel the unknown
forcing to obtain a transmissibility that is indepen-
dent of the details of the forcing function. A correct
construction is given in [14]. Furthermore, S2SID
is more general than transmissibility identification
since S2SID is applicable to arbitrary collections
of sensors, such as accelerometers, displacements
sensors, and strain gauges. Finally, like transmissi-
bility identification, S2SID does not perform modal
analysis as in the case of operational modal analy-
sis [7–11]. Instead, S2SID can be applied without
knowledge of the structural geometry as long as the
sensors are in close enough proximity to facilitate
PTF identification.
Impact and Benefits to NASA or Aeronautics
This work is aligned with the Aviation Safety Pro-
gram (AvSP), whose goals are to predict and pre-
vent safety issues, to monitor for safety issues in-
flight and mitigate against them should they occur,
to analyze and design safety issues out of complex
system behaviors, and to constantly analyze designs
and operational data for potential hazards. More-
over, AvSP strives to advance state-of-the-art design
tools to detect, avoid, and protect against loss-of-
control due to potential adverse events including at-
mospheric and vehicle system factors, and develops
advanced capabilities for detection and mitigation
of aging-related hazards before they become criti-
cal. These goals are addressed in our research by
providing in-flight health monitoring without rely-
ing on controlled excitation.

This research will provide significant cost and
time savings for aircraft health monitoring while im-
proving safety and reliability. In addition, this work
will contribute to the following NASA and national
goals.
National Security & Homeland Defense R&D Goals
& Objectives.
Demonstrate innovative airframe structural con-
cepts for efficient high-altitude flight.
Aviation Safety R&D Goals & Objectives.
Develop technologies to reduce accidents and in-
cidents through enhanced vehicle design, structure,

and subsystems.
Approach
The approach taken for this investigation was a
government-academia collaboration that consisted
of a partnership between NASA DFRC and the De-
partment of Aerospace Engineering at the Univer-
sity of Michigan. The academia partner pledged in-
kind money worth approximately $332,000, which
included salary support, infrastructure cost, travel
for scholarly discussions of research progress, and
presentation of results at internationally recognized
conferences. Both partners provided the theoretical
analysis of the problem, algorithmic development,
and validation. In addition, NASA facilitated the
strategic research task and provided fight-test data
from the SOFIA aircraft for algorithmic validation.

Summary of Research
This project focused on theoretical, algorithmic,
and implementation issues that are critical to mak-
ing sensor-to-sensor system identification (S2SID)
SHM a viable technology for aircraft SHM. The the-
oretical and algorithmic issues in S2SID-SHM are
described in Aim 1. Aim 2 focuses on validating
S2SID-SHM based on simulated data. Aim 3 ap-
plies S2SID-SHM to flight data for further valida-
tion. These descriptions are taken from the Phase I
proposal.
Aim 1: Theoretical and Algorithmic Extensions
of S2SID-SHM.

Issue 1: Persistency and identifiability. Since
S2SID depends on freely available and unknown
ambient excitation, it is necessary to ascertain that
this excitation is sufficiently persistent (despite be-
ing otherwise unknown) to facilitate estimation of
key parameters. In addition, key parameters must
be identifiable, that is, estimated without ambiguity.
We will address both issues through analysis of the
algorithm based on the aircraft’s flight envelope and
the expected ambient excitation spectrum.

Status: This issue was addressed by analysis of
SOFIA data. We performed coherence, correlation,
and detrend analysis of the data, and we discov-
ered a direct relationship between correlation and
proximity of sensors. Although this finding was not
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surprising, it demonstrated the integrity of the data,
building confidence in its usefulness and limitations
for PTF identification. With regard to persistency
and identifiability, the data was found to be rich in
spectral content, and thus sufficient for use in PTF
identification.

Issue 2: Sensor noise. Identification accuracy
depends on the ability to obtain consistent estimates
of key parameters, that is, asymptotically vanish-
ing estimation bias as increasingly larger data sets
are used. A technique that ensures consistency
was demonstrated in [17]; however, [17] assumes
knowledge of the autocorrelation (coloring) of the
sensor noise. Our goal is to alleviate the need for
this assumption.

Status: Significant effort was devoted to this is-
sue, which is challenging due to the fact that sensor
noise is unknown and affects all sensors. Estima-
tion of the impulse response is a well-studied prob-
lem; we compared various techniques with regard
to their sensitivity to sensor noise in [18]. Analysis
of the SOFIA data indicated measurement quantiza-
tion as a result of sensor resolution constraints, but
otherwise the noise statistics are unknown. We per-
formed extensive least-squares fits of sensor data,
using both IIR and FIR model structures. The main
finding is that the best prediction errors were ob-
tained using an FIR model structure. This finding
is consistent with theoretical results that show that
transfer function identification with a white input
signal and with noise corrupting the output sensor
yields consistent estimates of the impulse response.
However, in the case of PTFs, the input signal is not
white, and sensor noise may corrupt both the input
and output signals.

Issue 3: Nonlinearity. Thus far, S2SID is based
on linear models. Recent work [19] shows that con-
sistent estimates are achievable despite the presence
of certain types of nonlinearities. For S2SID, we
will investigate the accuracy of the estimated PTFs
by developing modifications to the algorithm that
ensure that the PTF estimates are independent of the
unknown excitation in the presence of nonlineari-
ties. The goal is to demonstrate the robustness of
S2SID to nonlinearities in the structural response.

Extensions to nonlinear PTFs can also facilitate this
goal.

Status: We applied techniques for detecting
whether the PTF includes significant nonlineari-
ties. In particular, we applied two different tech-
niques for identifying Hammerstein systems, which
are systems involving the cascade of a static input
nonlinearity and a linear dynamic subsystem [19].
The static input nonlinearity provides an indication
of distortion present in the PTF. These techniques
showed that no significant nonlinearity was present
in the PTFs between the sensors that were selected.
Aim 2: Validation with Simulated Data. The
performance of S2SID-SHM will be assessed and
demonstrated by using synthetic data sets generated
from simulated mass-spring-damper truth models of
various geometries with simulated sensor noise and
nonlinearities. For each geometry, we will perform
statistical analysis of the accuracy of the method.
The estimated PTFs will be compared to the true
PTFs to assess the effectiveness of S2SID-SHM.
This phase will provide a means for quantifying
damage by providing estimates of the structural pa-
rameters.

Status: We performed extensive tests of syn-
thetic data sets in conjunction with the analysis of
SOFIA data. The approach taken was to apply iden-
tification techniques to SOFIA data, and then use
synthetic data sets to probe the underlying model
properties. Results of this type are described later in
this section.
Aim 3: Application to Experimental Flight-Test
Data. We will apply S2SID-SHM to experimen-
tal flight-test data from NASA DRFC’s SOFIA pro-
gram. The SOFIA data, which were collected to
observe structural loads during missions, is ideally
suited for assessing how the structural dynamics and
parameters change during the aircraft’s flight his-
tory. In contrast to simulated data, the truth model
is unknown, and thus successful demonstration of
this approach to the analysis of flight data will serve
to validate the utility of S2SID-SHM to NASA for
mission readiness and safety assurance.

Status: We applied S2SID to flight data obtained
from the SOFIA aircraft located at the NASA Dry-
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den Flight Research Center. SOFIA is a highly mod-
ified Boeing 747SP, housing an infrared telescope
in the aft fuselage. The telescope is isolated from
the onboard scientific staff and equipment by means
of a pressure dome, thus allowing a door to open
and permit astronomical observations. Due to long
flight durations of 10 hours or more and the stress
of opening the telescope door in-flight, structural
health monitoring of both the aircraft and telescope
are of concern. As such, a suite of accelerometers
have been placed at various locations throughout the
aircraft to provide data for post-flight stress analy-
sis. We obtained three data sets from SOFIA flights.

In particular, experimental flight data were gath-
ered during a routine flight at 12,192–15,240 m
(40,000–50,000 ft) to conduct astronomical obser-
vations onboard SOFIA. Data were collected by the
sensors under ambient conditions during flight. The
accelerometer data used in this study were collected
from sensors located at the right horizontal stabi-
lizer tip, rear spar (vertical direction), and vertical
stabilizer front and rear spars (lateral direction). The
sensor data were filtered by a sixth-order antialias-
ing Butterworth filter with a cut-off at 1 kHz and
recorded at 5 kHz. Data were collected while the
aircraft operated in the Mach number range M =
0.4–0.7 and dynamic pressures Q = 26–390 psf
(pounds per square foot). Data were preprocessed
to remove the linear trend, mean, and outliers. The
preprocessing step ensured that all unwanted low-
frequency disturbances, offsets, trends, and drifts
were removed to enhance the accuracy of the iden-
tified models. Coherence between signals was stud-
ied with and without preprocessing. We applied
S2SID with and without preprocessing in order to
ascertain the effects of these procedures. We also
estimated the level of error in the data due to the
sensor resolution. In particular, the output resolu-
tion is the smallest distance between signal mea-
surements. Dividing the output range by the out-
put resolution gives the dynamic range, which is the
maximum number of distinct sensor output values
over the output range.

Accomplishments
Results of PTF Identification

PTF identification is based on least squares op-
timization in conjunction with specialized model
structures. In the following discussion we assume
that the system being identified is linear, and we fo-
cus on linear model structures for system identifica-
tion. Although there are various ways to represent
systems with inputs and outputs, system identifica-
tion typically uses discrete-time, time-series mod-
els, where the current output is a linear combina-
tion of past inputs and outputs. Special cases of
these models include moving average (MA) mod-
els, autoregressive (AR) models, and autoregres-
sive/moving average with exogenous input (AR-
MAX) models. Time series models can be repre-
sented as transfer functions, where the numerator
coefficients weight the past inputs, and the denom-
inator coefficients weight the past outputs. In con-
trast to state space models, time-series models do
not involve an explicit internal state.

Various types of time-series models are used
for system identification. Infinite-impulse-response
(IIR) models possess an impulse response that re-
quires an infinite number of steps to decay to zero.
The impulse response of a time-series model con-
sists of numbers called impulse response parame-
ters, which are denoted by H1, H2, . . . . Impulse re-
sponse parameters are also called Markov parame-
ters. A specialized form of IIR models is given by
the µ-Markov model [18, 20–22], whose numerator
coefficients include a collection of impulse response
parameters. Finally, a finite-impulse-response (FIR)
model is a discrete-time, time-series model with the
special property that its impulse response reaches
and remains at zero after a finite number of steps.
All of the coefficients of an FIR model are Markov
parameters. µ-Markov models provide a bridge be-
tween IIR models and FIR models in the sense that,
as µ increases, the µ-Markov model increasingly
mimics the form of an FIR model.

The accuracy of least-squares identification of
time-series models depends on various aspects of
the problem. For example, the model order may
be unknown, and errors may be incurred by over-
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estimating or underestimating the order. Next, the
inputs to the system must be sufficiently persistent
to allow estimation of the model coefficients. Fur-
thermore, beyond persistency, for the case in which
the input to the system is stochastic, the statistical
properties of the input can affect the accuracy of the
parameter estimates. And, finally, the nature of the
noise corrupting the input and output of the system
impacts the accuracy of the parameter estimates.
The most challenging situation arises when both the
input and output signals are corrupted by noise that
is mutually correlated. (We note that “sensor noise”
on the input refers to uncertainty about the input sig-
nal due to actuator noise.)

In [18] we compared least-squares techniques
with various time-series models under different
types of inputs and sensor noise. In the case of a
persistent but otherwise arbitrary input signal and in
the presence of noise on both the input and the out-
put, it is shown in [17] that consistent parameters
can be obtained if the statistical nature of the input
and output noise is known. However, this knowl-
edge is usually not available in practice. In the more
realistic case in which the statistical properties of
the input and output noise are unknown, it is shown
in [18] that consistency of the impulse response pa-
rameters can be achieved using µ-Markov models
under more restrictive assumptions, namely, if the
input signal is white noise and only output noise is
present. This result motivates interest in using µ-
Markov models for system identification. If, in ad-
dition, input noise is present, then it is shown in [19]
that semi-consistency can be achieved, where semi-
consistency refers to consistency up to an unknown
multiplicative constant. In view of these issues, it
is clear that the challenging aspects of S2SID are 1)
the input signal is not white, 2) the input and output
are corrupted by correlated noise, and 3) the statis-
tical properties of the sensor noise is unknown.

Using SOFIA data to guide the Phase I investi-
gations, we found that the most accurate model fits,
as determined by prediction error (cross validation)
were obtained from least-squares optimization
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Figure 1: This plot shows the prediction error (cross valida-
tion) for FIR model fits as a function of output delay. Delaying
the output relative to the input improves the accuracy of the
model fit as measured by a prediction error criterion.

of FIR time-series models. However, these in-
vestigations provided an unexpected feature illus-
trated in Figure 1. Specifically, Figure 1 shows that
the prediction error decreases as the output delay is
increased relative to the input. The reason for this
surprising effect becomes clear only upon plotting
the impulse response of the FIR model. As shown in
Figure 2, the impulse response of the fit model has a
significant noncausal component, plotted to the left
of the chosen delay step.

To confirm that the noncausal component of the
SOFIA impulse response is contributing to the pre-
diction error, we remove the noncausal component
and then re-include it one impulse parameter at a
time; this is done by including the impulse response
parameters one at a time from the left of the cho-
sen delay step in Figure 2. Figure 3 shows that the
prediction error decreases as noncausal impulse re-
sponse parameters are included in the identified FIR
model.
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Figure 2: This plot shows the PTF impulse response of the
FIR model fit corresponding to a chosen output delay of 298
steps. The surprising feature of this impulse response is that
it has a significant noncausal component, which appears to the
left of the delay of 298 steps.
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Figure 3: The prediction error is plotted here as an increas-
ing number of noncausal impulse response parameters are in-
cluded in the model. This plot confirms that the noncausal
component of the estimated model contributes to the predic-
tion accuracy.
Source of the Noncausal Impulse Response

As shown above, the noncausal component of
the impulse response estimated by identification
with an FIR model structure provides a significant
improvement to the identification accuracy as mea-
sured by the prediction error. This is a surpris-
ing observation since it suggests that the PTF be-
tween the pseudo-input and pseudo-output is not
physically meaningful. To investigate this issue,
we constructed synthetic data sets by simulating the
lumped mass-spring-damper systems shown in Fig-
ure 4. Specifically, we excite this structure with an
external force, and we record the velocities of two
masses for use in PTF identification. We consider

parameters for two cases. In the first case, Figure 5
shows that delaying the pseudo-output does not lead
to a noncausal component of the impulse response.
However, in the second case, Figure 6 shows that
delaying the pseudo-output does in fact produce a
noncausal component of the impulse response. The
key distinction between the PTFs in these two cases
is the fact that in the former case the PTF is stable,
whereas, in the latter case, the PTF is unstable.
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Figure 4: Mass-spring-damper structure. This example is
used to produce synthetic data for developing and testing PTF
identification methods. By adjusting the parameters, stable
and unstable PTFs can be constructed.

Although the mass-spring-damper system is sta-
ble, the transfer function from force to a velocity
measurement may be nonminimum phase, that is,
it may have zeros outside of the unit circle. In this
case, the PTF may be unstable, although the pseudo-
input and pseudo-output data used to identify the
PTF are bounded. Applying system identification
to fit the PTF yields an FIR model with a significant
noncausal component. This noncausal component is
an artifact of the use of an FIR model structure. Al-
though an IIR model structure can be used to avoid
the noncausal component, the presence of noise cor-
rupting the sensors yields inaccurate IIR model fits,
whereas FIR model fits are significantly more accu-
rate.
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Figure 5: PTF identification is applied to the structure in
Figure 4 with the parameters m1 = 9 kg, m2 = 4 kg, m3 = 2
kg, k1 = 99 N/m, k2 = 28 N/m, k3 = 310 N/m, k4 = 101
N/m, c1 = 0.9 N-sec/m, c2 = 5.1 N-sec/m, c3 = 0.8 N-
sec/m, c4 = 5.2 N-sec/m and discretization time step of 0.2
sec. A random white noise force excitation is applied to m2.
The pseudo-input is the velocity of m3, and the pseudo-output
is the velocity of m1. The estimated PTF impulse response is
found to be causal.
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Figure 6: PTF identification is applied to the structure in
Figure 4 with the parameters as in Figure 5 except that now
m3 = 14 kg. In this case, the estimated impulse response is
found to be noncausal. The noncausal component of the im-
pulse response is due to the fact that one of the transfer func-
tions from excitation to measurement is nonminimum phase,
and therefore the PTF from the pseudo-input to the pseudo-
output is unstable. The instability of the PTF induces a non-
causal component in the PTF impulse response.

Next Steps
The proposed Phase II research is aimed at refining

and demonstrating this approach, thereby moving
S2SID to an enhanced readiness status for transition
to NASA applications, with potential applications to
non-aerospace structures for infrastructure monitor-
ing. The objectives of the proposed Phase II project
are as follows:

Task 1. Refine the prediction error of the iden-
tified PTFs. The approach developed in Phase I in-
dicates the ability to construct models that provide
high-fidelity predictions of the response of one sen-
sor based on another sensor. Our goal is to continue
to improve the accuracy of these predictions, which
is essential to the next two objectives.

Task 2. Develop detection metrics to assess PTF
structural changes. Once system identification is
used to construct an empirical PTF, the next crucial
step is to develop metrics for assessing changes to
the aircraft that warrant inspection. Metrics can be
based on either changes to the PTF or its prediction
error. This is the primary objective of Phase II.

Task 3. Apply S2SID to flight data to determine
threshold criteria. We plan to continue working with
data from SOFIA (Stratospheric Observatory for In-
frared Astronomy) [23] along with other aircraft to
assess sensitivity to flight conditions and possible
long-term changes in the structural dynamics.

Current TRL: 2

Applicable NASA Programs/Projects
The proposed research complements the Vehi-
cle Systems Safety Technologies (VSST) Project,
whose goal is to detect, mitigate, and recover from
hazardous flight conditions, while maintaining air-
worthiness and health. These goals will be ad-
dressed in our research by providing in-flight health
monitoring without relying on controlled excitation.

In addition, we envision our S2SID approach to
SHM to be tested and refined inflight on-board the
NASA DFRC flexible MUTT research aircraft. The
Phase II proposal package includes a letter of sup-
port from Mr. John Bosworth, who is the Project
Chief Engineer for the X-56A MUTT vehicle.
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C1 K. Aljanaideh, A. Ali, M. Holzel, S.L. Kukreja
and D.S. Bernstein. “Sensor-to-Sensor Identi-
fication of Hammerstein Systems”, Submitted
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Sensor Identification for the SOFIA Testbed”,
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gation, and Control Conference, pages TBD,
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C4 A. V. Morozov, A. A. Ali, A. M. D’Amato,
A.J. Ridley, S. L. Kukreja and D. S. Bern-
stein. “Retrospective-Cost-Based Model Re-
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pean Control Conference, volume 50, pages
2142 - 2147, Orlando, Florida, December
2011.

C5 A.J. Brzezinski, S.L. Kukreja, J. Ni and D.S.
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J1 M. Holzel, A. Asad, A. D’Amato, S.L. Kukreja,
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parametric Identification of Hammerstein
Systems Using Ersatz Nonlinearities Auto-
matica, May 2012 (submitted).

Journal Papers in Progress
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tification of Pseudo Transfer Functions. In
preparation for Automatica.
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